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Factorizations

Graphoid axioms
HIV example
D separation

Backdoor criterion

Survival analysis (if time)
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Factorisation of the nodes V

If V follows a NPSEM-IE, then for any p(vj_1) with p(Vj_1) > 0 we have that
p(vj | vi—1) = p(v;j | paj) and therefore the joint density factorizes as

p(v) = [T (v | pay).

This factorisation is the only restriction that the causal model implies on the law
of the observed data. )

Thus, in our example from slide 82, the observed law factorizes as
p(v) = p(l,a',y) = p()p@" | Np(y | a',1),

which means that here we put absolutely no restrictions on the law
p(v) = P(V =v). You will prove (part of this lemma) this in your

homework.
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No restrictions on p(v) imposed by the NPSEM-IE

We have seen from Slide 71 that the only restriction imposed on the
observed law is the factorisation

m

p(v) =] p(v | pa)).

j=1

Any further restriction must be a restriction on the form of p(v; | pa;) for
any j € {0,...,m}. But

P(V; = vj | PA; = paj) = P(f,(paj, Uy;) = vj),

J

and we have not put any restrictions on the marginal density of U,,. [

.
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Markov equivalence classes

Definition (Markov equivalence class)

A Markov equivalence class is a set of DAGs that encode the same set of
conditional independencies.

Example of markov equivalent DAGs:

L > A > Y | < A > Y

Implication: We cannot use data alone to distinguish between causal
graphs.
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A clinical story

Suppose the graph on Slide 75 represents a study of HIV-positive individuals
to estimate the effect of an antiretroviral treatment A on 3-year risk of
death Y.

The unmeasured variable U € {0, 1} indicates high level of
immunosuppression. Those with U = 1 have a greater risk of death.

Individuals who drop out from the study or are otherwise lost to follow-up
are censored (C =1).

Individuals with U = 1 are more likely to be censored because the severity of
their disease prevents them from participating in the study.

The effect of U on censoring C is mediated by the presence of symptoms
(fever, weight loss, diarrhea, and so on), CD4 count, and viral load in
plasma, all included in L, which could or could not be measured.

Individuals receiving treatment are at a greater risk of experiencing side
effects, which could lead them to dropout, as represented by the arrow from
A to C. The square around C indicates that the analysis is restricted to
individuals who remained uncensored (C = 0) because those are the only
ones in which Y can be assessed.
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Loss to follow-up example 1

A graph corresponding to the story from Slide 74

N

Factorisation according to the DAG with ordering (A, U, L, C, Y):

~ €<— C

p(y, ¢l u, a) = p(y | u, a)p(C ‘ [, a)p(/ ’ u)p(u)p(a)

But how do we use this factorization to identify causal effects?
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Properties of conditional independence

Theorem (Graphoid axioms)

Let X,Y,Z, W be random variables on a Cartesian product space.
Conditional independence satsifies

Q@ XLY|Z = YLX|Z (Symmetry)

Q@ XLY W|Z = X _LY|Z (Decomposition)

Q@ XLY W|Z = XLW]|Y,Z (Weak union)

QX LW|Y,ZandX LY |Z = X LY,W|Z (Contraction)

Q@ Ifp(x,y,z,w) >0, then X L W |Y,Z and
XLY|W,Z = X LY, W|Z (Intersection)

You will study these in your homework.
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Proof of Graphoid axioms

I will not prove all of them here. The fifth identity is part of the
homework. | just state a brief proof of the first one.

© Symmetry follows simply because

XLY|Z<p(x|2)ply|z)=p(x,y]|2)
=plylz)p(x[2) Y LX|Z.

0l

v
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D separation of a path

Now we will study a beautiful graphical condition on G that immediately
tells if X L Y | Z, where X, Y, Z are disjoint sets of nodes in V, is
implied by the Markov factorisation.

Definition (d-separation of a path)

A path r is d-separated by a set of nodes Z iff
@ r contains a chain V; — V; — V) or a fork V; < V; — V| such that
Viisin Z, or

@ r contains a collider V; — V; < V) such that V; is not in Z and such
that no descendant of Vj is in Z.

Otherwise the path is d-connected.
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D separation of two nodes

Definition (d-separation of two nodes)

Nodes V; and V/ are d-separated by a set of nodes Z if all trails between
Vi and Vj are d-separated by Z. We write d-separation as

(Vi L V| 2Z)g-
If V; and V) are not d-separated, they are d-connected and we write

(Vi L Vi|2Z)g-

Theorem (Soundness of d-separation)

(Vi L Vi | Z) implies the statistical independence

Vi L Vi | Z.

A consequence of soundness is that d-separation in G implies conditional
independence for any distribution that factorizes according to G.
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D-separation details and intuition

@ D-separation can be shown solely using the Graphoid axioms (but the
proof is tedious).

@ d-separation allows us to determine independencies of a distribution
from the structure of a statistical DAG that represents it.

@ Heuristically, two variables are d-separated (independent) if there is
no open path between them.

Mats J. Stensrud Biostatistics Spring 2024



Linear structural equation example

We have not imposed any parametric assumptions so far. However, just
for the illustration, suppose we have a (partially) linear structural equation
model with two variables satisfying

A= f(Ua)
Y =a+ BA+ Uy (6)

This structural equation model implies that the individual level causal
effects is Y2=1 — Ya=0 = I

We conclude that the linear equation model relies on extremely strong
assumptions that usually will be implausible. In this course, we will not
rely on such assumptions.
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Modified non-parametric example

A different SEM M

L=1(U)
A= fA(La UA)
Y = fy(A, Uy) (7)
and the graph G,
L > A > Y

@ Encodes that, changes in L leaves Y unchanged, provided that Uy
and A remain constant.

@ Does this graph encode any restrictions on the distribution of
(L,A Y)?
We will formally study what kind of restrictions the
structural models involve

Spring 2024
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Faithfulness and completeness of d-separation

Definition

A law P is faithful to a DAG G if for any disjoint set of nodes A,B,C we
have that A L C | B under P implies (A L C | B)g.

Theorem (Completeness of d-separation)

In a Bayesian Network with respect to a direct acyclic graph G there exists
a faithful law P.

We will not prove this important result!!.

The completeness of d-separation allows us to use d-separation to represent the
conditional independence structure of a multivariate distribution.

You can look at the graph, and read off all independencies that hold in the entire
class of distributions factorizing according to the DAG.

" Ann Becker, Dan Geiger, and Christopher Meek. “Perfect tree-like markovian
distributions”. In: arXiv preprint arXiv:1301.3834 (2013); Pearl, Causality: Models,

Reasoning and Inference 2nd Edition.
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The causal Markov assumption and faithfulness (intuition

and interpretation)

@ d-separation implies statistical independence, but does not allow one
to deduce that d-connection implies statistical dependence.

@ However, d-connected variables will be independent only if there is an
exact balancing of positive and negative causal effects.

@ Because such precise balancing of effects is highly unlikely to occur,
we shall henceforth generally assume that d-connected variables are
dependent.
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Backdoor adjustment

Definition (Backdoor path)

In a DAG G a backdoor path between two nodes V; and V; is a trail that
starts in V; and ends in V}; and with initial edge being an arrow pointing
into V;

Example backdoor path between V; and V; is: V; < V| — V.
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Backdoor theorem

Theorem (Backdoor theorem wrt. to a DAG)

In DAG G representing a NPSEM-IE, let X, Y and Z be three sets of nodes of G,
each comprised of one or more nodes. Suppose that X contains no descendants
of Z and it blocks all back-door paths between any node in Z and any node in Y :
Suppose that g = (g1, .- ., &) is a regime for Z = (Zy,...,Z;) (for some t > 1)
such that treatment assignments depend at most on X: Then, for any x in the
support of X such that p(Z = g(x) | x) = Pr(Z = g(x) | X = x) > 0, it holds
that

P(YE=y)=) P(Y=y|Z=g(x),X=x)P(X=x)

v,

See Pearl'? for proof (not required). This theorem is very useful, because it allows us to
identify causal effects even if certain nodes in the graph are unmeasured.

12 Judea Pearl. “Causal diagrams for empirical research”. In: Biometrika 82.4 (1995),
pp. 669-688.

Mats J. Stensrud Biostatistics Spring 2024 86 /416



Implication from the Backdoor theorem

It follows immediately from the backdoor theorem that if Y2 1L A | L then

P(Y?=y)=> P(Y=y|L=1A=a)P(L=]).
/

However, we can also use it to identify causal effects in much more
complicated settings, which also involve unmeasured variables.
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Backdoor theorem in the example on loss to follow-up

Consider the example from Slide 75.
@ Note that

o L blocks all backdoor paths between (A, C) and Y.
o Thus,

]E(Ya,c:O) — ZE(Y | A=a,C=0,L= /)P(L: /)7
/

which can be estimated simply by standardisation:
o Estimate E(Y |A=a,C=0,L=/)byE(Y|A=a,C=0,L=1),
o Estimate P(L = /) empirically.
o Standardise
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PS: Many causal questions are more difficult

Realistic questions are often more difficult. Consider for example:
@ when should we start a treatment?
@ How long should we continue treatment?
@ When to switch to different treatment?

@ What event should guide us to switch treatment?
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Section 8

Time-to-events and survival analysis
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The Moderna vaccine

A Per-Protocol Ansysis
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Figure 3: Survival analysis is e.g. used to present results from vaccine trials.
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Time to events are all over the place

Time from birth to death.

Time from birth to cancer diagnosis.

Time from disease onset to death.

Time from entry to a study to cancer relapse.
Time from marriage to divorce.

Time from production until a machine is broken.

Time from origin of the coronavirus until a stock (marked) crashes.
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Take metrics with a grain of salt, but...

Although the top-100 list has a rich seam of
M papers on statistics, says Stephen Stigler, a
statistician at the University of Chicago in Illi-
nois and an expert on the history of the field,
“these papers are not at all those that have been
most important to us statisticians”. Rather, they
are the ones that have proved to be most use-

ful to the vastly larger population of practising
scientists.

Much of this crossover success stems from
the ever-expanding stream of data coming out
of biomedical labs. For example, the most fre-
quently cited statistics paper (number 11)is a
1958 publication' by US statisticians Edward
Kaplan and Paul Meier that helps researchers

to find survival patterns for a population, such
as participants in clinical trials. That intro-
duced what is now known as the Kaplan-Meier
estimate. The second (number 24) was Brit-

ish statistician David Cox’s 1972 paper'® that
expanded these survival analyses to include

Nature explores the most-cited research of all time. factors such as gender and age.

Figure 4. The two most cited statistics papers concern survival analysis
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Some common questions

@ What is survival under treatment A vs B?
@ What is the duration of a certain component in the machine?
@ How long does it take before a stock marked crashes?

PS: These questions are very often about causal effects....
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An overview of the time-to-event data structure

@ We follow units of over time;
humans, animals, engines, etc.

@ The events of interest may be the time to deaths, cancer diagnoses,
divorces, child births, engine failures, etc.

@ We often stop the study before everyone has experienced the event of
interest.
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Censored survival times (illustration)

Consider 10 patients with newly diagnosed cancer. Let T € (0, 7] be a
survival time.

° - °
e 0 =
'
o - B ——— o 4
'
'
© - S ©
V
'
~ 4 $ ~
'
'
© o —_— , © 4——
- ' -
£ N H
2 w4 —_— N S o o
& v &
'
< —_— ' <« +—e
'
'
- ©
'
'
o — ' N
'
'
-] — e - .
'
'
e N m | - r 1 r 1 1
0 2 4 6 8 10 0 2 4 6 8 10
Calendar time Study time

7.32, 4.19, 8.11, 2.70, 4.42, 5.43, 6.46, 6.32, 3.80, 3.50.
How do you estimate E(T), that is, the mean survival?
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One way to define censoring

Definition (Censoring)

A censoring event is any event occurring in the study by time t that
ensures the values of all future (possibly counterfactual) outcomes of
interest under a regime g are unknown, even for an individual receiving the
intervention g.

@ This definition covers observational (non-causal) settings as a special
case, by considering a regime g which implements exactly the decision
rule that was used in the observed data.

@ Many other definitions exist in the literature. | will argue why this
definition is useful.
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Why not use "standard methods”?

@ We have incomplete observations.

o Instead of observing the survival time T; € (0, c0) we observe (T, D;),

Ti=T if Di=1,
T, < T: if D;=0.

where D; is a censoring indicator.
We want to use our information on T; to make inference on T;.

@ There is a strong link to causal inference and "what if" questions:
What would happen if we observed T; instead of T;.

@ We must make assumptions about the censoring, similarly to
assumptions in causal inference.
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Let's start with a single outcome process

Assume T > 0 is an absolutely continuous random variable.

Definition (Survival function)

The survival function is S(t) = P(T > t), that is, the probability that the
survival time T exceeds t.

Definition (Hazard rate)

The hazard rate a(t) = limgo J;P(t +dt > T >t | T > t) is the rate
of events per unit of time.

Informally, a(t)dt = P(t+dt > T >t | T > t) is the probability that the
event will happen between time t and time t + dt given that it has not
happened earlier.13

13PS: We are going to extend this to multiple events later.
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Cumulative hazard and some relations

Define the cumulative hazard,

Then,
15(t)—5(t+dt): S'(t)  f(r)

= aMode S0t S~ S(t)

H'(t) = a(t)

By integration
t
| als)ds = ~togs(0))
0
and thus

S(t) =exp{— /Ot a(s)ds}.

a(t) completely determines the distribution of survival times T.
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[llustration of hazards and survival functions
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Fig. 1.2 Nlustrating hazard rates and survival curves. The hazard rates on the left correspond to
the survival curves on the right.
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